
Week 13 - Friday



 What did we talk about last time?
 Finished fish and bears example











 The idea of inheritance is to take one class and generate a 
child class

 This child class has everything that the parent class has 
(members and methods)

 But, you can also add more functionality to the child
 The child can be considered to be a specialized version of the 

parent



 The key idea behind inheritance is safe code reuse
 You can use old code that was designed to, say, sort lists of 
Vehicles, and apply that code to lists of Cars

 All that you have to do is make sure that Car is a subclass (or 
child class) of Vehicle





 All this is well and good, but how do you actually create a 
subclass?

 Let's start by writing the Vehicle class

class Vehicle:
def travel(self, destination):

print('Traveling to', destination)



 We use put the superclass name in parentheses when making a 
subclass

 A Car can do everything that a Vehicle can, plus more

class Car(Vehicle):
def __init__(self, model):

self.model = model

def getModel(self):
return self.model

def startEngine(self):
print('Vrooooom!')



 There is a part of the Car class that knows all the Vehicle
members and methods

car = Car('Camry')

#prints 'Camry'
print(car.getModel()) 

#prints 'Vrooooom!'
car.startEngine()

#prints 'Traveling to New York City'
car.travel('New York City')



 Each Car object actually has a Vehicle
object buried inside of it

 If code tries to call a method that isn't 
found in the Car class, it will look deeper 
and see if it is in the Vehicle class

 The outermost method will always be 
called

Car

model

getModel()
startEngine()

Vehicle

travel()



 If a class's parent has a constructor (the __init__()
method), that constructor needs to get called too
 That way, your parent gets set up correctly

 The best way to do that is to access the parent with the 
super() function

 Inside a class's constructor, it should call 
super().__init__()
 Inserting arguments if appropriate



 The Car class has a constructor that takes a model
 So, if we make a child class, it needs to call the parent 

constructor with a model

class RocketCar(Car):
def __init__(self):

super().__init__('Rocket Car')

def fireRockets(self):
print('Rockets firing!')





 Sometimes you want to do more than add
 You want to change a method to do something different
 You can write a method in a child class that has the same 

name as a method in a parent class
 The child version of the method will always get called
 This is called overriding a method



 We can define the Mammal class as follows:

class Mammal:
def makeNoise(self):

print('Grunt!')



 From there, we can define the Dog, Cat, and Human subclasses, 
overriding the makeNoise() method appropriately

class Dog(Mammal):
def makeNoise(self):

print('Woof')

class Cat(Mammal):
def makeNoise(self):

print('Meow')

class Human(Mammal):
def makeNoise(self):

print('Hello')







 Inheritance examples



 Finish Assignment 9
 Due tonight by midnight!

 Keep reading Chapter 12


	COMP 1800
	Last time
	Questions?
	Assignment 9
	Assignment 10
	Inheritance
	Inheritance
	Code reuse	
	Inheritance Mechanics
	Creating a subclass
	Extending a superclass
	Power of inheritance
	A look at a Car
	Calling the parent constructor
	Parent example
	Overriding Methods
	Adding to existing classes is nice…
	Mammal example
	Mammal subclasses
	Work Time
	Upcoming
	Next time…
	Reminders

