
Week 13 - Friday



 What did we talk about last time?
 Finished fish and bears example











 The idea of inheritance is to take one class and generate a 
child class

 This child class has everything that the parent class has 
(members and methods)

 But, you can also add more functionality to the child
 The child can be considered to be a specialized version of the 

parent



 The key idea behind inheritance is safe code reuse
 You can use old code that was designed to, say, sort lists of 
Vehicles, and apply that code to lists of Cars

 All that you have to do is make sure that Car is a subclass (or 
child class) of Vehicle





 All this is well and good, but how do you actually create a 
subclass?

 Let's start by writing the Vehicle class

class Vehicle:
def travel(self, destination):

print('Traveling to', destination)



 We use put the superclass name in parentheses when making a 
subclass

 A Car can do everything that a Vehicle can, plus more

class Car(Vehicle):
def __init__(self, model):

self.model = model

def getModel(self):
return self.model

def startEngine(self):
print('Vrooooom!')



 There is a part of the Car class that knows all the Vehicle
members and methods

car = Car('Camry')

#prints 'Camry'
print(car.getModel()) 

#prints 'Vrooooom!'
car.startEngine()

#prints 'Traveling to New York City'
car.travel('New York City')



 Each Car object actually has a Vehicle
object buried inside of it

 If code tries to call a method that isn't 
found in the Car class, it will look deeper 
and see if it is in the Vehicle class

 The outermost method will always be 
called

Car

model

getModel()
startEngine()

Vehicle

travel()



 If a class's parent has a constructor (the __init__()
method), that constructor needs to get called too
 That way, your parent gets set up correctly

 The best way to do that is to access the parent with the 
super() function

 Inside a class's constructor, it should call 
super().__init__()
 Inserting arguments if appropriate



 The Car class has a constructor that takes a model
 So, if we make a child class, it needs to call the parent 

constructor with a model

class RocketCar(Car):
def __init__(self):

super().__init__('Rocket Car')

def fireRockets(self):
print('Rockets firing!')





 Sometimes you want to do more than add
 You want to change a method to do something different
 You can write a method in a child class that has the same 

name as a method in a parent class
 The child version of the method will always get called
 This is called overriding a method



 We can define the Mammal class as follows:

class Mammal:
def makeNoise(self):

print('Grunt!')



 From there, we can define the Dog, Cat, and Human subclasses, 
overriding the makeNoise() method appropriately

class Dog(Mammal):
def makeNoise(self):

print('Woof')

class Cat(Mammal):
def makeNoise(self):

print('Meow')

class Human(Mammal):
def makeNoise(self):

print('Hello')







 Inheritance examples



 Finish Assignment 9
 Due tonight by midnight!

 Keep reading Chapter 12


	COMP 1800
	Last time
	Questions?
	Assignment 9
	Assignment 10
	Inheritance
	Inheritance
	Code reuse	
	Inheritance Mechanics
	Creating a subclass
	Extending a superclass
	Power of inheritance
	A look at a Car
	Calling the parent constructor
	Parent example
	Overriding Methods
	Adding to existing classes is nice…
	Mammal example
	Mammal subclasses
	Work Time
	Upcoming
	Next time…
	Reminders

